ФЭНДОМ


Wikipedia.png Это — материал из Википедии.

Парадо́кс Риша́ра — семантический парадокс, впервые описанный французским математиком Жюлем Ришаром в 1905 году.

Описание Править

С помощью некоторых фраз русского языка могут быть охарактеризованы те или иные вещественные числа. Например, фраза «отношение длины окружности к длине её диаметра» характеризует число \pi, а фраза «две целых и три десятых» характеризует число 2,3. Все фразы русского языка можно перенумеровать определенным способом, например упорядочим фразы по алфавиту как в словаре, тогда каждая фраза получит тот номер, на каком месте она находится. Теперь можно в этой нумерации фраз опустить все те, которые не характеризуют какое-нибудь вещественное число. Число, которое получает при такой нумерации номер n, назовем n-м числом Ришара.

Рассмотрим такую фразу: «Вещественное число, у которого n-й десятичный знак равен 1, если у n-го числа Ришара n-й десятичный знак не равен 1, и n-й десятичный знак равен 2, если у n-го числа Ришара n-й десятичный знак равен 1». Эта фраза определяет некоторое число Ришара, допустим, k-е; однако, согласно определению, оно отличается от k-го числа Ришара в k-м десятичном знаке. Таким образом, пришли к противоречию.

См. также Править

Обнаружено использование расширения AdBlock.


Викия — это свободный ресурс, который существует и развивается за счёт рекламы. Для блокирующих рекламу пользователей мы предоставляем модифицированную версию сайта.

Викия не будет доступна для последующих модификаций. Если вы желаете продолжать работать со страницей, то, пожалуйста, отключите расширение для блокировки рекламы.

Также на ФЭНДОМЕ

Случайная вики